-->

Application Of Derivatives

Question
CBSEENMA12035531

A window consists of a semi-circle with a rectangle on its diameter. If the perimeter of the window is 30 metres, find the dimensions of the window in order that its area may be maximum.
Or
A window is in the form of a rectangle surmounted by a semi-circle. If the total perimeter of the window is 30 m. find the dimensions of the window so that maximum light is admitted.

Solution
Let x, y be length, breadth of the rectangle ABCD. Let straight x over 2 be the radius of semi-circle with centre at O.

Let P be the perimeter of figure.
 therefore space space space space space space straight x plus 2 straight y plus straight pi straight x over 2 space equals space 30
rightwards double arrow space space space space space 2 straight x plus 4 straight y plus πx space equals space 60
rightwards double arrow space space space space 4 straight y space equals 60 minus left parenthesis straight pi plus 2 right parenthesis space straight x
rightwards double arrow space space space space space straight y space equals fraction numerator 60 minus left parenthesis straight pi plus 2 right parenthesis space straight x over denominator 4 end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
Let A be area of the figure.
 therefore space space space space straight A space equals space xy plus 1 half straight pi open parentheses straight x over 2 close parentheses squared space equals space straight x open square brackets fraction numerator 60 minus left parenthesis straight pi plus 2 right parenthesis space straight x over denominator 4 end fraction close square brackets space plus space πx squared over 8 space space space space space space space space space space space space space space space space open square brackets because space of space left parenthesis 1 right parenthesis close square brackets
therefore space space space space space straight A space equals space 1 fourth left square bracket 60 space minus space left parenthesis straight pi plus 2 right parenthesis space straight x squared right square bracket space plus space straight pi over 8 straight x squared
therefore space space space space dA over dx space equals 1 fourth left square bracket 60 minus 2 left parenthesis straight pi plus 2 right parenthesis space straight x right square bracket plus space πx over 4
  Now comma space dA over dx space equals 0 space space space rightwards double arrow space space space 1 fourth left square bracket 60 minus 2 left parenthesis straight pi plus 2 right parenthesis space straight x right square bracket plus πx over 4 space equals 0
rightwards double arrow space space space 60 minus 2 left parenthesis straight pi plus 2 right parenthesis space plus space πx space equals space 0 space space space space space space rightwards double arrow space space space 60 minus 2 πx minus 4 straight x plus πx space equals space 0
               fraction numerator straight d squared straight A over denominator dx squared end fraction space equals 1 fourth left square bracket 0 minus 2 left parenthesis straight pi plus 2 right parenthesis plus straight pi over 4 space equals fraction numerator negative 2 left parenthesis straight pi plus 2 right parenthesis over denominator 4 end fraction plus fraction numerator straight pi plus 4 over denominator 4 end fraction space equals space minus fraction numerator straight pi plus 4 over denominator 4 end fraction
When straight x space equals fraction numerator 60 over denominator straight pi plus 4 end fraction comma space space fraction numerator straight d squared straight A over denominator dx squared end fraction space equals space minus fraction numerator straight pi plus 4 over denominator 4 end fraction less than 0
therefore space space space straight A space is space maximum space when space straight x space equals fraction numerator 60 over denominator straight pi plus 4 end fraction
and   straight y equals fraction numerator 60 minus left parenthesis straight pi plus 2 right parenthesis space. begin display style fraction numerator 60 over denominator straight pi plus 4 end fraction end style over denominator 4 end fraction space equals space fraction numerator 60 straight pi plus 240 minus 60 straight pi minus 120 over denominator 4 left parenthesis straight pi plus 4 right parenthesis end fraction space equals space fraction numerator 30 over denominator straight pi plus 4 end fraction
therefore area of figure is maximum i.e. maximum light is admitted when length of rectangle = straight x equals fraction numerator 60 over denominator straight pi plus 4 end fraction comma
breadth of rectangle equals straight y equals space fraction numerator 30 over denominator straight pi plus 4 end fraction
radius of semi-circle equals straight x over 2 space equals fraction numerator 15 over denominator straight pi plus 4 end fraction


Some More Questions From Application of Derivatives Chapter