-->

Application Of Derivatives

Question
CBSEENMA12035529

A wire of length 36 cm is cut into two pieces. One of the pieces is turned in the form of a square and the other in the form of an equilateral triangle. Find the length of each piece so that the sum of the areas of the two be minimum.

Solution

Total length of wire = 36 cm
Let x cm be length of each side of square and y cm be length of each side of quilateral triangle.
Length of wire used for square = 4x cms
and length of wire used for triangle = 3y cms
∴  4x + 3y = 36  ⇒  3y = 36 – 4x
rightwards double arrow space space space space straight y space equals space fraction numerator 36 minus 4 straight x over denominator 3 end fraction                                                                      ...(1)
Let A denote the sum of the areas of square and equilateral triangle.
therefore space space space straight A space equals space left parenthesis straight x right parenthesis squared plus 1 half left parenthesis straight y right parenthesis space left parenthesis straight y right parenthesis space left parenthesis sin space 60 degree right parenthesis                                    open square brackets increment space equals space 1 half bc space sin space straight A close square brackets
             straight x squared plus fraction numerator square root of 3 over denominator 4 end fraction straight y squared space equals space straight x squared plus fraction numerator square root of 3 over denominator 4 end fraction open parentheses fraction numerator 36 minus 4 straight x over denominator 3 end fraction close parentheses squared                   open square brackets because space of space left parenthesis 1 right parenthesis close square brackets 
therefore space space space space space space straight A minus straight x squared plus fraction numerator 4 square root of 3 over denominator 9 end fraction left parenthesis 9 minus straight x squared right parenthesis
                dA over dx equals 2 straight x plus fraction numerator 4 square root of 3 over denominator 9 end fraction.2 left parenthesis 9 minus straight x right parenthesis thin space left parenthesis negative 1 right parenthesis space equals space 2 straight x minus fraction numerator 8 square root of 3 over denominator 9 end fraction left parenthesis 9 minus straight x right parenthesis
dA over dx space equals space 0 space space space space gives space us space space 2 straight x minus fraction numerator 8 square root of 3 over denominator 9 end fraction left parenthesis 9 minus straight x right parenthesis space equals space 0
therefore space space space straight x minus 4 square root of 3 space plus space fraction numerator 4 square root of 3 over denominator 9 end fraction straight x space equals space 0 space space space space rightwards double arrow space space space space open parentheses 1 plus fraction numerator 4 square root of 3 over denominator 9 end fraction close parentheses straight x space equals space 4 square root of 3
rightwards double arrow space space space space space open parentheses 9 plus 4 square root of 3 close parentheses straight x space equals space 36 square root of 3 space space space rightwards double arrow space space space straight x space equals space fraction numerator 36 square root of 3 over denominator 9 plus 4 square root of 3 end fraction
space space space space space space space space space space space fraction numerator straight d squared straight A over denominator dx squared end fraction space equals space 2 plus fraction numerator 8 square root of 3 over denominator 9 end fraction
At space space straight x equals space fraction numerator 36 square root of 3 over denominator 9 plus 4 square root of 3 end fraction comma space space space space fraction numerator straight d squared straight A over denominator dx squared end fraction space equals space 2 plus fraction numerator 8 square root of 3 over denominator 9 end fraction greater than 0
therefore space space space straight A space is space minimum space when space straight x space equals space fraction numerator 36 square root of 3 over denominator 9 plus 4 square root of 3 end fraction
         Length of piece required for square  = 4x = fraction numerator 144 square root of 3 over denominator 9 plus 4 square root of 3 end fraction cm
and length of piece required for triangle  = 3y = 36 - 4x
               equals space 36 minus fraction numerator 144 square root of 3 over denominator 9 plus 4 square root of 3 end fraction space equals space fraction numerator 324 plus 144 square root of 3 minus 144 square root of 3 over denominator 9 plus 4 square root of 3 end fraction space equals space fraction numerator 324 over denominator 9 plus 4 square root of 3 end fraction cm.