-->

Application Of Derivatives

Question
CBSEENMA12035518

Find the point on the curve y2 = 2x which is nearest to the point (1,  4).

Solution

Any point on the parabola  y2 = 2x  is straight P open parentheses 1 half straight t squared comma space space straight t close parentheses.    Let Q be (1, 4)
Let a be the distance between straight Q left parenthesis 1 comma space 4 right parenthesis space and space straight P open parentheses 1 half straight t squared comma space space straight t close parentheses
therefore space space space space straight d space equals space square root of open parentheses straight t squared over 2 minus 1 close parentheses squared plus left parenthesis straight t minus 4 right parenthesis squared end root space space space space space space space space space space space space space space space space space space rightwards double arrow space space space straight d squared space equals space open parentheses straight t squared over 2 minus 1 close parentheses squared plus left parenthesis straight t minus 4 right parenthesis squared
therefore space space space space straight D space equals space straight t to the power of 4 over 4 minus straight t squared plus 1 plus straight t squared minus 8 straight t space plus 16 space equals space straight t to the power of 4 over 4 minus 8 straight t plus 17 comma space where space straight D space equals straight d squared
Now, d is maximum or minimum when D is maximum or minimum.
                       dD over dt space equals space straight t cubed minus 8
          dD over dt space equals 0 space space space space space space space space space space space space space rightwards double arrow space space space space space space space straight t cubed minus 8 space equals space 0 space space space space space rightwards double arrow space space space straight t cubed space equals space 8 space space space space space rightwards double arrow space space space straight t space equals space 2
fraction numerator straight d squared straight D over denominator dt squared end fraction space equals space 3 straight t squared
At space straight t space equals space 2 comma space space space fraction numerator straight d squared straight D over denominator dt squared end fraction space equals space 3 left parenthesis 2 right parenthesis squared space equals 12 greater than 0 space
therefore space space space straight D space is space minimum space when space straight t space equals space 2
therefore space space space straight P space is space left parenthesis 2 comma space 2 right parenthesis comma space which space is space nearest space to space straight Q left parenthesis 1 comma space 4 right parenthesis