-->

Application Of Derivatives

Question
CBSEENMA12035516

Find a point on the curve y2 = 4 x, which is nearest to the point (2, 1).

Solution

Any point on the parabola straight y squared space equals 4 straight x space space is space straight P left parenthesis straight t squared comma space space 2 straight t right parenthesis.
Let space straight Q space be space left parenthesis 2 comma space 1 right parenthesis.
Let d be the distance between Q (2, 1) and straight P left parenthesis straight t squared comma space 2 straight t right parenthesis
therefore space space space space space space straight d space equals space square root of left parenthesis straight t squared minus 2 right parenthesis squared plus space left parenthesis 2 straight t minus 1 right parenthesis squared end root space space space rightwards double arrow space space space straight d squared space equals space left parenthesis straight t squared minus 2 right parenthesis squared space space plus space left parenthesis 2 straight t minus 1 right parenthesis squared
therefore space space space space space straight D space equals space straight t to the power of 4 minus space 4 space straight t squared space plus space 4 space plus space 4 straight t squared space minus space 4 straight t space plus space 1 space space equals space straight t to the power of 4 minus 4 straight t plus 5 comma space space where space straight D space equals space straight d squared
Now d is maximum or minimum when D is maximum or minimum.
                     dD over dt space equals space 4 straight t cubed minus 4
        dD over dt space equals space 0 space space rightwards double arrow space space space 4 straight t cubed minus 4 space equals space 0 space space space space rightwards double arrow space space straight t cubed minus 1 space equals space 0 space space space space rightwards double arrow space space straight t cubed space equals space 1 space space rightwards double arrow space space space straight t space equals space 1
fraction numerator straight d squared straight D over denominator dt squared end fraction space equals space 12 straight t squared
At space space space straight t space equals space 1 comma space space fraction numerator straight d squared straight D over denominator dt squared end fraction space equals space 12 left parenthesis 1 right parenthesis squared space equals space 12 space greater than 0
therefore space space space straight D space is space minimum space when space straight t space equals space 1
therefore space space space straight P space is space left parenthesis 1 comma space 2 right parenthesis comma space which space is space nearest space to space left parenthesis 2 comma space 1 right parenthesis