-->

Application Of Derivatives

Question
CBSEENMA12035594

Use differentials to approximate the cube root of 28.

Solution
Take space straight y space equals straight x to the power of 1 third end exponent comma space space space straight x space equals space 27 comma space space space dx space equals space 1 space space space space space so space that space space straight x plus space dx space equals space 28
Now space space δy space equals space left parenthesis straight x plus δx right parenthesis to the power of 1 third end exponent space minus space straight x to the power of 1 third end exponent space equals space left parenthesis 27 plus 1 right parenthesis to the power of 1 third end exponent space minus space 27 to the power of 1 third end exponent space equals space left parenthesis 28 right parenthesis to the power of 1 third end exponent space minus space 3
therefore space space space left parenthesis 28 right parenthesis to the power of 1 third end exponent space equals space 3 space plus space δy                                                       ...(1)
Now  δy is approximately equal to dy and
    dy space equals space open parentheses dy over dx close parentheses dx space equals space open parentheses 1 third straight x to the power of negative 2 over 3 end exponent close parentheses space dx
space space space space space space space equals 1 third left parenthesis 27 right parenthesis to the power of negative 2 over 3 end exponent left parenthesis 1 right parenthesis space equals space 1 third left parenthesis 3 cubed right parenthesis to the power of negative 2 over 3 end exponent left parenthesis 1 right parenthesis space equals space 1 third left parenthesis 3 right parenthesis to the power of negative 2 end exponent left parenthesis 1 right parenthesis space equals space 1 third cross times 1 over 9 cross times left parenthesis 1 right parenthesis space equals 1 over 27
therefore space space from space left parenthesis 1 right parenthesis comma space left parenthesis 28 right parenthesis to the power of 1 third end exponent space is space approximately space equal space to space 3 plus 1 over 27 space equals 82 over 27.