-->

Application Of Derivatives

Question
CBSEENMA12035578

Let AP and BQ be two vertical poles at points A and B, respectively. If AP = 16 m. BQ = 22 m and AB = 20 m, then find the distance of a point R on AB from the point A such that RP2 + RQ2 is minimum.

Solution

Let R be a point on AB such that AR = x metres, RB = (20 – x) metres
∴  RP2 = AR2 + AP= x2 + (16)= x2+ 256
and RQ2 = RB2 + BQ2
= (20 – x)2 + (22)2
= 400+ x2 – 40 x + 484
= x– 40 x + 884
Let y = RP2 + RQ2

therefore space space space space space straight y space equals space left parenthesis straight x squared plus 256 right parenthesis space plus left parenthesis straight x squared minus 40 straight x plus 884 right parenthesis
therefore space space space space space straight y space equals space 2 straight x squared minus 40 straight x plus 1140
space space space space space space space space space space space space dy over dx space equals space 4 straight x minus 40
space space space space space space space space space space space space space dy over dx space equals space 0 space space space space rightwards double arrow space space space space 4 straight x minus 40 space equals space 0 space space space space rightwards double arrow space space space space straight x space equals space 10
space space space space space space space space space space space space fraction numerator straight d squared straight y over denominator dx squared end fraction space equals space 4
When space straight x space equals space 10 comma space space space fraction numerator straight d squared straight y over denominator dx squared end fraction space equals space 4 greater than 0
therefore space space space space space space straight y space is space minimum space when space straight x space space equals 10
therefore space space space space space space straight y space is space minimum space when space AR space equals space 10 space metres.