-->

Application Of Derivatives

Question
CBSEENMA12035549

Show that the right circular cylinder of given surface and maximum volume is such that its height is equal to the diameter of the base.

Solution

Let r be the radius of base of circular cylinder and h be its height. Let V be the volume and S be total surface area.
                   therefore space space space space straight S space equals space 2 πrh plus 2 πr squared space space space space space rightwards double arrow space space space space 2 πrh space equals space straight S minus 2 πr squared
space space space space space space
                      straight h space equals space fraction numerator 1 over denominator 2 πr end fraction left parenthesis straight S minus 2 πr squared right parenthesis                                                 ...(1)
                       straight V space equals space πr squared straight h space equals πr squared. space space fraction numerator 1 over denominator 2 πr end fraction left parenthesis straight S minus 2 πr squared right parenthesis                          open square brackets because space of space left parenthesis 1 right parenthesis close square brackets
therefore space space space space space straight V space equals space 1 half straight r left parenthesis straight S minus 2 πr squared right parenthesis space equals space 1 half left parenthesis Sr minus 2 πr cubed right parenthesis space where space straight S space is space constant.
                  dV over dr space equals space 1 half left parenthesis straight S minus 6 πr squared right parenthesis
Now, dV over dr space equals space 0 space space space gives space us space 1 half left parenthesis straight S minus 6 πr squared right parenthesis space space equals 0
therefore space space space straight S minus 6 πr squared space equals space 0 space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space 2 πrh plus 2 πr squared minus 6 πr squared space equals space 0
therefore space space space 2 πrh space equals space 4 πr squared space space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space straight h space equals space 2 straight r
space space space space space space space space fraction numerator straight d squared straight V over denominator dr squared end fraction space equals space 1 half left parenthesis 0 minus 12 πr right parenthesis space equals negative 6 πr
When space straight r space equals straight h over 2 comma space fraction numerator straight d squared straight V over denominator dr squared end fraction space equals space minus 6 straight pi. space straight h over 2 space equals space minus 3 πh less than 0
therefore  V is maximum when h = 2r i.e., height of the cylinder is equal to the diameter of the base.