-->

Application Of Derivatives

Question
CBSEENMA12035424

Find the local maxima or local minima, if any, of following functions using the first derivative test only. Find also the local maximum and the local minimum values, as the case may be:
f(x) = (x – 1)(x + 2)2

Solution
f (x) = (x – 1)(x + 2)2
straight f apostrophe left parenthesis straight x right parenthesis space equals space left parenthesis straight x minus 1 right parenthesis space straight d over dx open square brackets left parenthesis straight x plus 2 right parenthesis squared close square brackets space plus space left parenthesis straight x plus 2 right parenthesis squared. space straight d over dx left parenthesis straight x minus 1 right parenthesis
= (x – 1), 2 (x + 2) + (x + 2)2, 1 = 2 (x2 + x – 2) + x+ 4x + 4
= 2 x2 + 2 x – 4 – x2 + 4 x + 4.

f ' (x) = 3 x2 + 6 x
= (x – 1), 2 (x + 2) + (x + 2)2, 1 = 2 (x2 + x – 2) + x+ 4 x + 4
= 2 x2 + 2 x – 4 – x2 + 4 x + 4.
f ' (x) = 3 x2 + 6 x
f ' (x) = 0 gives us 3 x2 – 6 x = 0. or x2 + 2 x = 0
∴  x (x + 2) = 0 ∴ x = 0, – 2
f ' ' (x) = 6 x + 6
At x = 0, f ' ' (x) = 0 + 6 = 6 > 0
∴  f (x) has a local minimum at x = 0
∴  local minimum value = (c – 1) (0 + 2)2 = – 4
At x = – 2, f ' ' (x) = – 12 + 6 = – 6 < 0
∴  f (x) has a local maximum at x = – 2
 ∴  local minimum value = (– 2 – 1) (– 2 + 2)2 = 0