-->

Application Of Derivatives

Question
CBSEENMA12035409

Examine the following function for extreme values:
f(x) = (x – 3)(x + 1)6

Solution

Here f (x) = (x – 3)5 (x + 1)6
Differentiating (I) w.r.t. x, we get
f ' (x) = 5 (x – 3)4 (x + 1)6 + (x – 3)5 (x + 1 )5
∴   f ' (x) = (x – 3)4 (x + 1)5 [5 (x + 1) + 6 (x – 3)]
= (x – 3)4 (x + 1)(11 x – 13)
Now,   space straight f apostrophe left parenthesis straight x right parenthesis space equals space 0 space space space space space when space straight x space equals space 3 comma space space minus 1 space space of space 13 over 11
(a) When x = 3
If x < 3 (slightly), f ' (x) = (+) (+) (+) = + ve
If x > 3 (slightly), f ' (x) = (+) (+) (+) = + ve
Hence f ' (x) does not change sign as x passes through 3.
∴  x = 3 is neither a point of maxima, nor a point of minima. 3 is a point of inflexion.
(b) When x = – 1
If x < – 1 (slightly), f ' (x) = (+) (–) (–) = + ve
If x > – 1 (slightly), f ' (x) = (+) (+) (–) = – ve
∴  f ' (x) changes from positive to negative as a passes through – 1
Hence x = – 1 is a point of local maxima and maximum value of the function at x = – 1 is f (– 1) = 0.
(c) When straight x space equals space 13 over 11
  If space straight x less than 13 over 11 space left parenthesis slightly right parenthesis comma space space straight f apostrophe left parenthesis straight x right parenthesis space equals space left parenthesis plus right parenthesis thin space left parenthesis plus right parenthesis thin space left parenthesis negative right parenthesis space equals space minus ve comma
If space straight x greater than 13 over 11 left parenthesis slightly right parenthesis comma space space space straight f apostrophe left parenthesis straight x right parenthesis space equals space left parenthesis plus right parenthesis thin space left parenthesis plus right parenthesis thin space left parenthesis plus right parenthesis space equals space plus ve
therefore space space space space straight f apostrophe space left parenthesis straight x right parenthesis space changes space from space negative space to space positive space as space straight x space passes space through space 13 over 11
Hence space 13 over 11 space is space straight a space point space of space local space minimum space and space locla space minimum space value space is space given space by
space space space space space straight f open parentheses 13 over 11 close parentheses space equals space open parentheses 13 over 11 minus 3 close parentheses to the power of 5 space space open parentheses 13 over 11 plus 1 close parentheses to the power of 6 space equals negative fraction numerator left parenthesis 20 right parenthesis to the power of 5 over denominator left parenthesis 11 right parenthesis to the power of 5 end fraction fraction numerator left parenthesis 24 right parenthesis to the power of 6 over denominator left parenthesis 11 right parenthesis to the power of 6 end fraction space equals space fraction numerator 2 to the power of 28. end exponent 3 to the power of 6. space 5 to the power of 5 over denominator left parenthesis 11 right parenthesis to the power of 11 end fraction