-->

Application Of Derivatives

Question
CBSEENMA12035353

Let f be a function defined on [a, b] such that f ' (x) > 0, for all x ∊ (a, b). Then prove that f is strictly increasing function of (a, b).

Solution

Since f '(x) > 0 in (a, b).
therefore space space space space space for space any space straight c space element of space space left parenthesis straight a comma space straight b right parenthesis comma space straight f apostrophe left parenthesis straight c right parenthesis space greater than space 0
By Lagrange's mean value theorem,
                  straight f apostrophe left parenthesis straight c right parenthesis space equals space fraction numerator straight f left parenthesis straight x subscript 2 right parenthesis minus straight f left parenthesis straight x subscript 1 right parenthesis over denominator straight x subscript 2 minus straight x subscript 1 end fraction space where space straight a less than straight x subscript 1 less than straight c less than straight x subscript 2 less than straight b
But straight f space apostrophe space left parenthesis straight c right parenthesis space greater than space 0                                                                           open square brackets because space space space of space left parenthesis 1 right parenthesis close square brackets
therefore space space space space space space fraction numerator straight f left parenthesis straight x subscript 2 right parenthesis space minus straight f left parenthesis straight x subscript 1 right parenthesis over denominator straight x subscript 2 minus straight x subscript 1 end fraction greater than 0
rightwards double arrow space space space space straight f left parenthesis straight x subscript 2 right parenthesis space minus straight f left parenthesis straight x subscript 1 right parenthesis thin space greater than 0
rightwards double arrow space space space space straight f left parenthesis straight x subscript 2 right parenthesis thin space greater than space straight f left parenthesis straight x subscript 1 right parenthesis space space space space rightwards double arrow space space space straight f left parenthesis straight x subscript 1 right parenthesis thin space less than space space straight f left parenthesis straight x subscript 2 right parenthesis
therefore space space space space space space straight x subscript 1 space less than space straight x subscript 2 space space space space space space rightwards double arrow space space space space straight f left parenthesis straight x subscript 1 right parenthesis thin space less than space straight f left parenthesis straight x subscript 2 right parenthesis space for all space straight x subscript 1 comma space space straight x subscript 2 space element of space left parenthesis straight a comma space straight b right parenthesis
therefore space space space straight f left parenthesis straight x right parenthesis space is space strictly space increasing space in space left parenthesis straight a comma space straight b right parenthesis