-->

Application Of Derivatives

Question
CBSEENMA12035352

Find the intervals in which the function (x + 1)3 (x – 1)3 is strictly increasing or decreasing.

Solution

Let straight f left parenthesis straight x right parenthesis space equals space left parenthesis straight x plus 1 right parenthesis cubed space left parenthesis straight x minus 3 right parenthesis cubed
therefore space space space space straight f apostrophe left parenthesis straight x right parenthesis space equals space left parenthesis straight x plus 1 right parenthesis cubed. space space straight d over dx open square brackets left parenthesis straight x minus 3 right parenthesis cubed close square brackets plus space left parenthesis straight x minus 3 right parenthesis cubed. space space straight d over dx open square brackets left parenthesis straight x plus 1 right parenthesis cubed close square brackets
space space space space space space space space space space space space space space space space space space space space equals left parenthesis straight x plus 1 right parenthesis cubed. space space 3 left parenthesis straight x minus 3 right parenthesis squared space plus space left parenthesis straight x minus 3 right parenthesis to the power of 3. end exponent space 3 space left parenthesis straight x plus 1 right parenthesis squared
space space space space space space space space space space space space space space space space space space space equals 3 space left parenthesis straight x plus 1 right parenthesis squared space left parenthesis straight x minus 3 right parenthesis squared space left parenthesis 2 straight x minus 2 right parenthesis space equals space 6 left parenthesis straight x plus 1 right parenthesis squared space left parenthesis straight x minus 3 right parenthesis squared space left parenthesis straight x minus 1 right parenthesis
Now comma space space space straight f apostrophe left parenthesis straight x right parenthesis greater than 0
rightwards double arrow space space space space space 6 left parenthesis straight x plus 1 right parenthesis squared space left parenthesis straight x minus 3 right parenthesis squared space left parenthesis straight x minus 1 right parenthesis less than 0 space space space space space space rightwards double arrow space space straight x minus 1 space less than space 0 space space space space space space space rightwards double arrow space space straight x space less than space 1
therefore space space space straight f left parenthesis straight x right parenthesis space is space strictly space decreasing space in space left parenthesis negative infinity comma space 1 right parenthesis.

space space space space space space space space space
Also comma space straight f apostrophe left parenthesis straight x right parenthesis space less than space 0
rightwards double arrow space space space space space 6 left parenthesis straight x plus 1 right parenthesis squared space left parenthesis straight x minus 3 right parenthesis squared space left parenthesis straight x minus 1 right parenthesis thin space less than 0 space space space space space rightwards double arrow space space space straight x minus 1 space less than space 0 space space space space space rightwards double arrow space space straight x space less than space 1
therefore space space space space straight f left parenthesis straight x right parenthesis space is space strictly space decreasing space in space left parenthesis negative infinity comma space 1 right parenthesis.
 

Some More Questions From Application of Derivatives Chapter