-->

Application Of Derivatives

Question
CBSEENMA12035298

Find the intervals in which the function f given by f(x) = 2x2 – 3x is
(a) strictly increasing    (b) strictly decreasing

Solution

f(x) = 2x2 – 3x                   rightwards double arrow space space space space straight f apostrophe left parenthesis straight x right parenthesis space equals space 4 straight x minus 3
Now straight f apostrophe left parenthesis straight x right parenthesis space equals space 0 space space space space space space space space space space space space space space space rightwards double arrow space space space space 4 straight x minus 3 space equals space 0 space space space space space rightwards double arrow straight x space equals space 3 over 4
The point straight x equals 3 over 4 divides the real line into two disjoint intervals open parentheses negative infinity comma space 3 over 4 close parentheses space and space open parentheses 3 over 4 comma space infinity close parentheses.
In space space open parentheses negative infinity comma space space space 3 over 4 close parentheses comma space space space straight f apostrophe left parenthesis straight x right parenthesis space equals space 4 straight x minus 3 space space less than space space 0
therefore space space space space space space space space space straight f space is space strictly space decreasing space in space open parentheses negative infinity comma space space 3 over 4 close parentheses.
In space open parentheses 3 over 4 comma space infinity space close parentheses comma space space space space space straight f apostrophe left parenthesis straight x right parenthesis space equals space 4 straight x minus 3 space greater than space 0
therefore space space space space straight f space is space strictly space increasing space in space open parentheses 3 over 4 comma space infinity close parentheses.