-->

Application Of Derivatives

Question
CBSEENMA12035284

Show that straight y equals log space left parenthesis 1 plus straight x right parenthesis space minus space fraction numerator 2 straight x over denominator 2 plus straight x end fraction is an increasing function of x throughout its domain.

Solution
straight y space equals space log space left parenthesis 1 plus straight x right parenthesis space minus space fraction numerator 2 straight x over denominator 2 plus straight x end fraction
therefore space space space space space dy over dx space equals space fraction numerator 1 over denominator 1 plus straight x end fraction minus fraction numerator left parenthesis 2 plus straight x right parenthesis. space 2 space minus space 2 space straight x. space 1 over denominator left parenthesis 2 plus straight x right parenthesis squared end fraction space equals space fraction numerator 1 over denominator 1 plus straight x end fraction space equals space fraction numerator 4 plus 2 straight x minus 2 straight x over denominator left parenthesis 2 plus straight x right parenthesis squared end fraction space equals fraction numerator 1 over denominator 1 plus straight x end fraction minus fraction numerator 4 over denominator left parenthesis 2 plus straight x right parenthesis squared end fraction
space space space space space space space space space space space space space space space space space space space space equals fraction numerator left parenthesis 2 plus straight x right parenthesis squared minus 4 left parenthesis 1 plus straight x right parenthesis over denominator left parenthesis 1 plus straight x right parenthesis thin space left parenthesis 2 plus straight x right parenthesis squared end fraction space equals space fraction numerator 4 plus straight x squared plus 4 straight x minus 4 minus 4 straight x over denominator left parenthesis 1 plus straight x right parenthesis thin space left parenthesis 2 plus straight x right parenthesis squared end fraction space equals space fraction numerator straight x squared over denominator left parenthesis 1 plus straight x right parenthesis thin space left parenthesis 2 plus straight x right parenthesis squared end fraction greater than 0
                                                                                                          open square brackets because space space space space straight x space equals space minus 1 close square brackets
therefore space space space space straight y space equals space log space left parenthesis 1 plus straight x right parenthesis space minus space fraction numerator 2 straight x over denominator 2 plus straight x end fraction space is space an space increasing space function space of space straight x space for all space straight x space space equals space minus 1.