-->

Application Of Derivatives

Question
CBSEENMA12035280

Prove that the function f given by f(x) = log cos x is strictly decreasing on open parentheses 0 comma space straight pi over 2 close parentheses and strictly increasing on open parentheses straight pi over 2 comma space straight pi close parentheses.

Solution
straight f left parenthesis straight x right parenthesis space equals space log space cos space straight x
therefore space space space space straight f apostrophe left parenthesis straight x right parenthesis space equals 1 over cos. left parenthesis negative sin space straight x right parenthesis space equals space minus tan space straight x
(i) Now,   straight f apostrophe left parenthesis straight x right parenthesis space equals space minus tan space straight x space less than space 0 space space for space space straight x space element of space open parentheses 0 comma space space straight pi over 2 close parentheses
therefore space space space straight f space is space strictly space decreasing space on space open parentheses 0 comma space space straight pi over 2 close parentheses
 left parenthesis ii right parenthesis space straight f apostrophe left parenthesis straight x right parenthesis space equals space minus tan space straight x greater than 0 space space space for space space straight x space element of space open parentheses straight pi over 2 comma space straight pi close parentheses
therefore space space space space space straight f space is space strictly space increasing space on space open parentheses straight pi over 2 comma space space straight pi close parentheses.

Some More Questions From Application of Derivatives Chapter