-->

Application Of Derivatives

Question
CBSEENMA12035278

Prove that the function log sin x is strictly increasing on open parentheses 0 comma space space straight pi over 2 close parentheses and strictly decreasing in  open parentheses straight pi over 2 comma space space straight pi close parentheses.

Solution

Let straight f left parenthesis straight x right parenthesis space equals space log space sin space straight x space
therefore space space space straight f apostrophe left parenthesis straight x right parenthesis space equals space fraction numerator 1 over denominator sin space straight x end fraction. space cos space straight x space equals space cot space straight x
(i) Now, straight f apostrophe left parenthesis straight x right parenthesis space equals space cot space straight x space greater than space 0 space space space space for space space space straight x space element of space open parentheses 0 comma space space straight pi over 2 close parentheses
therefore space space space space space straight f left parenthesis straight x right parenthesis space is space increasing space in space open parentheses 0 comma space space space straight pi over 2 close parentheses
left parenthesis ii right parenthesis space straight f apostrophe left parenthesis straight x right parenthesis space equals space cot space straight x space less than 0 space space space for space space space space straight x space element of space space open parentheses straight pi over 2 comma space straight pi close parentheses
therefore space space space space space straight f left parenthesis straight x right parenthesis space space is space decreasing space in space open parentheses straight pi over 2 comma space straight pi close parentheses.