-->

Application Of Derivatives

Question
CBSEENMA12035266

Prove that the function f (x) = cos x is
(i) strictly increasing in left parenthesis negative straight pi comma space 0 right parenthesis
(ii) strictly decreasing in left parenthesis 0 comma space straight pi right parenthesis
(iii) neither increasing nor decreasing in left parenthesis negative straight pi comma space straight pi right parenthesis

Solution

Here f (a) = cos x ⇒ f ' (x) = – sin x
(a) In left parenthesis negative straight pi comma space 0 right parenthesis,  f '(x) = – sin x > 0
∴ f (x) is strictly increasing in (– straight pi, 0)
(b) In left parenthesis 0 comma space straight pi right parenthesis  f ' (x) = – sin x < 0
∴   f (x) is strictly decreasing in (0, straight pi)
(c) Now f (x) is strictly increasing in (– straight pi, 0)  and strictly decreasing in left parenthesis 0 comma space straight pi right parenthesis
∴  f (x) is neither increasing nor decreasing in left parenthesis negative straight pi comma space straight pi right parenthesis.