-->

Application Of Derivatives

Question
CBSEENMA12035253

Show that the function given by f(x) = e2x is strictly increasing on R.

Solution

Here f (x) = e2 x ⇒ f ' (x) = 2 e2x
Three cases arise:
Case I.
                straight x space greater than 0
Syntax error from line 1 column 565 to line 1 column 668. Unexpected '<mlongdiv '.
Case II. x = 0
therefore space space space space straight f apostrophe left parenthesis straight x right parenthesis space equals space 2 straight e to the power of 0 space equals space 2 space straight x space 1 space equals space 2 space greater than space 0
Case III,
                straight x less than 0
therefore space space space straight f apostrophe left parenthesis straight x right parenthesis space equals space 2 straight e to the power of 2 straight x end exponent space equals space 2 over straight e to the power of negative 2 straight x end exponent space equals space fraction numerator 2 over denominator space straight a space positive space quantity end fraction greater than 0
therefore space space space space in space all space the space three space cases comma space space space straight f apostrophe left parenthesis straight x right parenthesis space greater than space 0
therefore space space space space straight f left parenthesis straight x right parenthesis space equals space straight e to the power of 2 straight x end exponent space is space strictly space increasing space on space straight R.