-->

Application Of Derivatives

Question
CBSEENMA12035145

Find the equation of the tangent to the curve y = (x3 – 1) (x – 2) at points where the curve cuts the x-axis.

Solution

The equation of given curve is
                        straight y space equals space left parenthesis straight x cubed minus 1 right parenthesis thin space left parenthesis straight x minus 2 right parenthesis space equals space left parenthesis straight x minus 1 right parenthesis thin space left parenthesis straight x minus 2 right parenthesis thin space left parenthesis straight x squared plus straight x plus 1 right parenthesis
It meets x-axis where y = 0
Putting y = 0,   we get,
              0 space equals space left parenthesis straight x minus 1 right parenthesis thin space left parenthesis straight x minus 2 right parenthesis thin space left parenthesis straight x squared plus straight x plus 1 right parenthesis
rightwards double arrow space space space space space space straight x space equals space 1 comma space 2 comma space fraction numerator negative 1 plus-or-minus square root of 1 minus 4 end root over denominator 2 end fraction space space space space space space rightwards double arrow space space space straight x space equals 1 comma space space 2 comma space space fraction numerator negative 1 plus-or-minus square root of negative 3 end root over denominator 2 end fraction
therefore space space space space space space straight x space equals space 1 comma space space space 2 space space space are space only space real space values
therefore space space space space space space space space space straight y space equals space 0 comma space space 0
therefore space space space space space space points space are space left parenthesis 1 comma space 0 right parenthesis comma space left parenthesis 2 comma space 0 right parenthesis.
Now space dy over dx space equals space left parenthesis straight x cubed minus 1 right parenthesis. space 1 space plus space left parenthesis straight x plus 2 right parenthesis.3 space straight x squared space equals space straight x cubed minus 1 plus 3 straight x cubed minus 6 straight x squared
space space space space space space space space space space space space space space space space space space equals space 4 straight x cubed minus 6 straight x squared minus 1 comma space space which space is space slope space of space tangent.

At (1, 0), slope of tangent = 4 (1)3 – 6 (1)–1 = 4 – 6 – 1 = – 3
At (2, 0), slope of tangent = 4 (2)3 – 6 (2)2 – 1 = 4 × 8 – 6 × 4 – 1 = 7
∴  equation of tangent at (1, 0) with slope – 3 is
y – 0 = – 3(x – 1) or y = – 3x + 3 or 3x + y – 3 = 0
The equation of tangent at (2, 0) with slope 7 is
y – 0 = 7(x – 2), or y = 7x – 14 or  7x – y - 14 = 0