-->

Application Of Derivatives

Question
CBSEENMA12035028

A ladder 5 m long is leaning against a wall. The bottom of the ladder is pulled along the ground, away from the wall, at the rate of 2 cm/s. How fast is its height on the wall decreasing when the foot of the ladder is 4m away from the wall? 

Solution

Let  the foot A of the ladder be at a distance x metres from the wall and y metres be the height of the wall at any time t.
             therefore space space space space space straight x squared plus straight y squared space equals space 25 space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis

Differentiating both sides w.r.t. 't', we get,
                  2 straight x dx over dt plus 2 straight y dy over dt space equals space 0
rightwards double arrow space space space space space straight x dx over dt plus straight y dy over dt space equals space 0
But space dx over dt space equals space 2 space cm divided by straight s space space equals space space 0.02 space straight m divided by straight s space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space               (given)
therefore space space space space 0.02 space straight x space plus space straight y dy over dt space equals space 0 space space space space space space space space space space space space space rightwards double arrow space space space space dy over dt space equals space minus fraction numerator 0.02 space straight x over denominator straight y end fraction space space space space space space space space space space... left parenthesis 2 right parenthesis
When space straight x space equals space 4 comma space space space from space left parenthesis 1 right parenthesis comma space we space get comma space space space 16 plus straight y squared space equals space 25 space space space space space space space rightwards double arrow space space space space space straight y squared space equals space 9 space space space space space rightwards double arrow space space space space straight y space equals space 3
When space straight x space equals space 4 comma space space straight y space equals space 3 space then space from space left parenthesis 2 right parenthesis comma space we space get comma space space space dy over dt space equals space minus fraction numerator 0.02 space cross times space 4 over denominator 3 end fraction
or space space space space space space space dy over dt space equals space minus fraction numerator 0.08 over denominator 3 end fraction straight m divided by straight s space equals space minus fraction numerator 8 space cross times space 100 over denominator 100 space cross times 3 end fraction space cm divided by straight s space equals space minus 8 over 3 cm divided by straight s
therefore space space space space height space of space the space wall space is space decreasing space at space the space rate space of space 8 over 3 cm divided by straight s.