-->

Application Of Derivatives

Question
CBSEENMA12035026

A particle moves along the curve  6y = x3 + 2. Find the points on the curve at which the y-coordinate is changing 8 times as fast as the x-coordinate.

Solution

Here,   6y = x3 + 2.                                    ...(1)
Differentiating both sides, w.r.t 't'
                   6 dy over dt space equals space 3 straight x squared dx over dt
But  dy over dt space equals space 8 dx over dt                                               (given)
therefore space space space space space space space 6 open parentheses 8 dx over dt close parentheses space equals space 3 straight x squared dx over dt space space space space space rightwards double arrow space space space space 16 space equals space straight x squared space space space space space space space space space space rightwards double arrow space space space space straight x space equals space 4 comma space space space minus 4
When space space space space straight x space equals space 4 space from space left parenthesis 1 right parenthesis comma space we space get comma space space space space space straight y space equals space fraction numerator left parenthesis 4 right parenthesis cubed plus 2 over denominator 6 end fraction space equals space 66 over 6 space equals space 11
When space space space straight x space equals space minus 4 space space from space left parenthesis 1 right parenthesis comma space we space get comma space space space straight y space equals space fraction numerator left parenthesis negative 4 right parenthesis cubed plus 2 over denominator 6 end fraction space equals space fraction numerator negative 62 over denominator 6 end fraction space equals space minus 31 over 3
therefore space space space space required space points space on space the space curve space are space left parenthesis 4 comma space 11 right parenthesis comma space space open parentheses negative 4 comma space space space space space space minus 31 over 3 close parentheses.