-->

Application Of Derivatives

Question
CBSEENMA12035072

Find a point on the curve y = (x – 2)2 at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).

Solution

The equation of curve is
                             straight y space equals space left parenthesis straight x minus 2 right parenthesis squared
therefore space space space space dy over dx space equals space 2 space left parenthesis straight x minus 2 right parenthesis
therefore space space space space slope space of space tangent space equals space 2 left parenthesis straight x minus 2 right parenthesis
Also slope of line joining (2, 0) and (4, 4) equals space fraction numerator 4 minus 0 over denominator 4 minus 2 end fraction space equals space 4 over 2 space equals space 2
because space space tangent space is space parallel space to space the space line space joining space left parenthesis 2 comma space 0 right parenthesis space and space left parenthesis 4 comma space 4 right parenthesis
therefore space space space their space slopes space are space equal
therefore space space space space space 2 left parenthesis straight x minus 2 right parenthesis space equals space 2 space space space space space rightwards double arrow space space space space space straight x minus 2 space equals space 1 space space space space rightwards double arrow space space space straight x space equals space 3
When space straight x space equals space 3 comma space space space straight y space equals space left parenthesis 3 minus 2 right parenthesis squared space equals space 1
therefore space space space space space space required space point space is space left parenthesis 3 comma space 1 right parenthesis.

Some More Questions From Application of Derivatives Chapter