-->

Application Of Derivatives

Question
CBSEENMA12035058

Find the points on the curve y = x3 at which the slope of the tangent is equal to the y-coordinate of the point.

 

Solution

The equation of curve is straight y space equals space straight x cubed
therefore space space space space dy over dx space equals space 3 straight x squared
Let space space left parenthesis straight x subscript 1 comma space space straight y subscript 1 right parenthesis space be space the space point.
At space left parenthesis straight x subscript 1 comma space space straight y subscript 1 right parenthesis space dy over dx space equals space 3 straight x subscript 1 squared comma space space space which space is space straight a space slope space of space tangent. space
From given condition,
                        3 straight x subscript 1 squared space equals space straight y subscript 1                                         ...(1)
Also,    left parenthesis straight x subscript 1 comma space straight y subscript 1 right parenthesis comma space lies space on space straight y space equals space straight x cubed
therefore space space space space space space space straight y subscript 1 space equals space straight x subscript 1 cubed
From (1) and (2),  straight x subscript 1 cubed space equals space 3 straight x subscript 1 squared space space space space rightwards double arrow space space space space straight x subscript 1 squared left parenthesis straight x subscript 1 minus 3 right parenthesis space equals space 0 space space space space rightwards double arrow space space space space straight x subscript 1 space equals space 0 comma space space 3
From (1),  straight y subscript 1 space equals 0 comma space 27
therefore space space space space space space points space are space left parenthesis 0 comma space 0 right parenthesis comma space space space left parenthesis 3 comma space 27 right parenthesis.