-->

Application Of Derivatives

Question
CBSEENMA12034993

An edge of a variable cube is increasing at the rate of 3 cm per second. How fast is the volume of the cube increasing when edge is 10 cm long?

Solution
Let x cm. be the length of an edge of a variable cube and V be its volume at any time t.
therefore space space space space space straight V space equals space straight x cubed space space space space space space space space space space space space space space space rightwards double arrow space space space space space dV over dt space equals space 3 straight x squared dx over dt
But   dx over dx space equals space 3 space cm divided by straight s                                                       (given)
therefore space space space space space dV over dt space equals space 3 straight x squared.3 space equals space 9 straight x squared
When x = 10 cm,   dV over dt space equals space 9 cross times left parenthesis 10 right parenthesis squared space equals space 900 space cm cubed divided by straight s
∴   volume of the cube is increasing at the rate of 900 cm3/s when the edge is 10 cm long.