-->

Matrices

Question
CBSEENMA12034205

Without using'the concept of inverse of a matrix, find the matrixopen square brackets table row straight x straight y row straight z straight u end table close square brackets such that open square brackets table row 5 cell negative 7 end cell row cell negative 2 end cell 3 end table close square brackets space open square brackets table row x y row z u end table close square brackets equals space open square brackets table row cell negative 16 end cell cell negative 6 end cell row 7 2 end table close square brackets

Solution
we space have space open square brackets table row 5 cell negative 7 end cell row cell negative 2 end cell 3 end table close square brackets space open square brackets table row straight x straight y row straight z straight u end table close square brackets equals open square brackets table row cell negative 16 end cell cell negative 6 end cell row 7 2 end table close square brackets
or space open square brackets table row cell 5 straight x minus 7 straight z end cell cell 5 straight y minus 7 straight u end cell row cell negative 2 straight x plus 3 straight z end cell cell negative 2 straight y plus 3 straight u end cell end table close square brackets equals space open square brackets table row cell negative 16 end cell cell negative 6 end cell row 7 2 end table close square brackets

by definition of equality of matrices,    
5 x – 7 z = – 16        ...(1)
–2x + 3z = 7    ...(2)
5y–7u = -6    .... ..(3)
–2y’ + 3u = 2    ...(4)
Equations (1) and (2) can be written as
5 x – 7 z + 16 = 0
–2x – 3z + 7 = 0    therefore fraction numerator straight x over denominator negative 49 plus 48 end fraction equals fraction numerator straight u over denominator 12 minus 10 end fraction equals fraction numerator 1 over denominator negative 15 plus 14 end fraction space space space space rightwards double arrow space space space space space space straight y over 4 equals straight u over 2 equals fraction numerator 1 over denominator negative 1 end fraction
therefore space space straight x equals 1 comma straight z equals 3
Equations space left parenthesis 5 right parenthesis space and space left parenthesis 4 right parenthesis space can space be space written space as
space space 5 y – space 7 u space plus space 6 space equals space 0 comma space 2 y space – space 3 space u space plus space 2 space equals space 0
therefore fraction numerator straight x over denominator negative 49 plus 48 end fraction equals fraction numerator straight u over denominator 12 minus 10 end fraction equals fraction numerator 1 over denominator negative 15 plus 14 end fraction space space space space rightwards double arrow space space space space space space straight y over 4 equals straight u over 2 equals fraction numerator 1 over denominator negative 1 end fraction
therefore space space space space space space space straight y equals negative 4 comma space straight u equals negative 2
therefore space open square brackets table row straight x straight y row straight z straight u end table close square brackets equals open square brackets table row 1 cell negative 4 end cell row 3 cell negative 2 end cell end table close square brackets