-->

Vector Algebra

Question
CBSEENMA12034016

Show that the direction cosines of a vector equally inclined to the axes OX, OY and OZ are fraction numerator 1 over denominator square root of 3 end fraction comma space fraction numerator 1 over denominator square root of 3 end fraction comma space fraction numerator 1 over denominator square root of 3 end fraction.

Solution

Let straight a with rightwards arrow on top space equals space straight a subscript 1 straight i with hat on top space plus space straight a subscript 2 straight j with hat on top space plus space straight a subscript 3 straight k with hat on top be the vector, where straight a subscript 1 comma space straight a subscript 2 comma space straight a subscript 3 are the direction ratios of the vector.
           Since vector is equally inclined to the axes
     therefore space space space space straight a subscript 1 space equals space straight a subscript 2 space equals space straight a subscript 3 space equals space straight p comma space space say.
therefore space space space straight a with rightwards arrow on top space equals space straight p space straight i with hat on top space plus space straight p space straight j with hat on top space plus straight p space straight k with hat on top
therefore space space space open vertical bar straight a with rightwards arrow on top close vertical bar space equals space square root of straight p squared plus straight p squared plus straight p squared end root space equals space square root of 3 space straight p squared end root space equals space square root of 3 space straight p
therefore space space space space space space space space space space space space space straight a with hat on top space equals space fraction numerator straight a with rightwards arrow on top over denominator open vertical bar straight a with rightwards arrow on top close vertical bar end fraction space equals space fraction numerator straight p over denominator square root of 3 space straight p end fraction straight i with hat on top space plus space fraction numerator straight p over denominator square root of 3 space straight p end fraction straight j with hat on top space plus space fraction numerator straight p over denominator square root of 3 space straight p end fraction straight k with hat on top
space space space space space space space space space space space space space space space space space space space space space equals space fraction numerator 1 over denominator square root of 3 end fraction straight i with hat on top space plus space fraction numerator 1 over denominator square root of 3 end fraction straight j with hat on top space plus space fraction numerator 1 over denominator square root of 3 end fraction straight k with hat on top
therefore   direction cosines of a vector equally inclined to axes are fraction numerator 1 over denominator square root of 3 end fraction comma space fraction numerator 1 over denominator square root of 3 end fraction comma space fraction numerator 1 over denominator square root of 3 end fraction.