-->

Vector Algebra

Question
CBSEENMA12034073

Find the angle between two vectors straight a with rightwards arrow on top space and space straight b with rightwards arrow on top with magnitudes 2  and 1 respectively, and such that straight a with rightwards arrow on top space. space straight b with rightwards arrow on top space equals space square root of 3.

Solution

Here a = 2,    b = 1,   straight a with rightwards arrow on top. space straight b with rightwards arrow on top space equals space square root of 3
Let straight theta be angle between straight a with rightwards arrow on top space and space straight b with rightwards arrow on top
Now,
             straight a with rightwards arrow on top. space straight b with rightwards arrow on top space equals space ab space cos space straight theta space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space space square root of 3 space equals space left parenthesis 2 right parenthesis thin space left parenthesis 1 right parenthesis space space cos space straight theta
therefore space space space space cos space straight theta space equals space fraction numerator square root of 3 over denominator 2 end fraction space space space space space space space space space space space space space space space space rightwards double arrow space space space straight theta space equals space 30 degree space. space space space space space