-->

Vector Algebra

Question
CBSEENMA12032975

Form the differential equation of the family of circles touching the x-axis at origin.

Solution

Let C denote the family of circles touching x-axis at origin. Let (0, a) be the coordinates of the centre of any member of the family where ‘a’ is an arbitrary constant.
∴    the equation of family C is
x2 + (y – a)2 = a2
∴   x2 + y2 + a2 – 2 a y = a2
or x2 + y2 – 2 a y = 0    ...(1)
a being arbitrary constant

Differentiating w.r.t. x, we get
           2 straight x plus 2 straight y dy over dx minus 2 straight a dy over dx space equals space 0
therefore              2 xy plus 2 straight y squared dy over dx minus 2 ay dy over dx space equals space 0                       ...(2)
                                                                                    [Multiplying by y]
Multiplying (1) by dy over dx comma space we space get comma
                      left parenthesis straight x squared plus straight y squared right parenthesis space dy over dx space minus space 2 ay dy over dx space equals space 0                  ...(3)
Subtracting (3) from (2), we get, 
                     2 xy plus 2 straight y squared dy over dx minus left parenthesis straight x squared plus straight y squared right parenthesis dy over dx space equals space 0 space space or space space 2 xy plus left parenthesis straight y squared minus straight x squared right parenthesis space dy over dx equals 0
or             open parentheses straight x squared minus straight y squared close parentheses space dy over dx space equals space 2 xy     or   dy over dx space equals space fraction numerator 2 xy over denominator straight x squared minus straight y squared end fraction
which is required differential equation.