-->

Vector Algebra

Question
CBSEENMA12032974

Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.

Solution
Let C denote the family of circles in the second quadrant and touching the coordinate axes. Let (– a, a) be the coordinate of the centre of any member of this family.

Equation representing the family C is
(x + a)2+ (y – a)2 = a2    ...(1)
or x2 + y2 + 2 ax – 2 a y + a2 = 0    ...(2)
Differentiating equation (2) with respect to x, we get
                           2 straight x plus 2 straight y dy over dx plus 2 straight a minus 2 straight a dy over dx equals 0
or              straight x plus straight y dy over dx space equals straight a open parentheses dy over dx minus 1 close parentheses
or                             straight a equals fraction numerator straight x plus straight y space straight y apostrophe over denominator straight y apostrophe minus 1 end fraction
Substituting the value of a in equation (1), we get
                                  open square brackets straight x plus fraction numerator straight x plus straight y space straight y apostrophe over denominator straight y apostrophe minus 1 end fraction close square brackets squared plus open square brackets straight y minus fraction numerator straight x plus straight y space straight y apostrophe over denominator straight y apostrophe minus 1 end fraction close square brackets squared space equals space open square brackets fraction numerator straight x plus straight y space straight y apostrophe over denominator straight y apostrophe minus 1 end fraction close square brackets squared
or        open square brackets xy apostrophe space minus straight x plus straight x plus straight y space straight y apostrophe close square brackets squared plus open square brackets straight y space straight y apostrophe space minus straight y space minus space straight x space minus space straight y space straight y apostrophe close square brackets squared space equals open square brackets straight x plus straight y space straight y apostrophe close square brackets squared
or         left parenthesis straight x plus straight y right parenthesis squared space straight y apostrophe squared space plus space open square brackets straight x plus straight y close square brackets squared space equals space open square brackets straight x plus space straight y space straight y apostrophe close square brackets squared
or        left parenthesis straight x plus straight y right parenthesis squared space left square bracket left parenthesis 1 plus left parenthesis straight y apostrophe right parenthesis squared right square bracket space equals space left square bracket straight x plus straight y space straight y apostrophe right square bracket squared
which is the differential equation representing the given family of circles.