-->

Vector Algebra

Question
CBSEENMA12032972

Find the differential equation of all the circles in the first quadrant which touch the co-ordinate axes.

Solution

Let r be the radius of the circle whose centre is C and CM ⊥ x-axis, CN ⊥ y-axis.
∵  circle touches both the axes
∴     CM = CN = r
∴   C is (r, r)
∴  equation of circle is
(x - r)2 + (y – r)2 = r2    ...(1)
Differentiating both sides w.r.t.x,
                           2 left parenthesis straight x minus straight r right parenthesis plus 2 left parenthesis straight y minus straight r right parenthesis space dy over dx space equals space 0
or                      open parentheses straight x minus straight r close parentheses plus left parenthesis straight y minus straight r right parenthesis space straight y subscript 1 space equals space 0
or                                    straight x plus straight y space straight y subscript 1 space equals space left parenthesis 1 plus straight y subscript 1 right parenthesis straight r space space space rightwards double arrow space space space space straight r space equals space fraction numerator straight x plus space straight y space straight y subscript 1 over denominator 1 plus straight y subscript 1 end fraction
Putting this value of r in (1), we get
                                    open parentheses straight x minus fraction numerator straight x plus space straight y space straight y subscript 1 over denominator 1 plus space straight y subscript 1 end fraction close parentheses squared plus space open parentheses straight y minus fraction numerator straight x space plus straight y space straight y subscript 1 over denominator 1 plus straight y subscript 1 end fraction close parentheses squared space equals space open parentheses fraction numerator straight x plus straight y space straight y subscript 1 over denominator 1 plus space straight y subscript 1 end fraction close parentheses squared
or         left parenthesis straight x plus space straight x space straight y subscript 1 space minus straight x minus space straight y space straight y subscript 1 right parenthesis squared plus space left parenthesis straight y space plus space straight y space straight y subscript 1 minus straight x minus space straight y space straight y subscript 1 right parenthesis squared space equals space left parenthesis straight x space plus space straight y space straight y subscript 1 right parenthesis squared
or                                                    open square brackets left parenthesis straight x minus straight y right parenthesis space straight y subscript 1 close square brackets squared plus left parenthesis straight y minus straight x right parenthesis squared space equals space left parenthesis straight x plus straight y space straight y subscript 1 right parenthesis squared
or                                                             open parentheses straight x minus straight y close parentheses squared plus left parenthesis 1 plus straight y subscript 1 squared right parenthesis space equals space left parenthesis straight x plus straight y space straight y subscript 1 right parenthesis squared
which is the required differential equation.