-->

Matrices

Question
CBSEENMA12032948

If space straight A space equals space open square brackets table row 2 3 row 4 5 end table close square brackets comma space straight B equals open square brackets table row 3 4 row 5 6 end table close square brackets comma space then find a matrix X such that 3A - 2B + 4X=O, where straight O equals open square brackets table row 0 0 row 0 0 end table close square brackets

Solution

We have
straight A equals open square brackets table row 2 3 row 4 5 end table close square brackets comma space straight B equals open square brackets table row 3 4 row 5 6 end table close square brackets
Now    3A - 2B + 4X = O   rightwards double arrow  4X = -3A + 2B
rightwards double arrow space space space 4 straight X space equals space minus 3 space open square brackets table row 2 3 row 4 5 end table close square brackets plus 2 space open square brackets table row 3 4 row 5 6 end table close square brackets
rightwards double arrow space space space 4 straight X space equals space open square brackets table row cell negative 6 end cell cell negative 9 end cell row cell negative 12 end cell cell negative 15 end cell end table close square brackets plus open square brackets table row 6 8 row 10 12 end table close square brackets
rightwards double arrow space space space 4 straight X space equals space open square brackets table row cell negative 6 plus 6 end cell cell negative 9 plus 8 end cell row cell negative 12 plus 10 end cell cell negative 15 plus 12 end cell end table close square brackets
rightwards double arrow space space space 4 straight X equals open square brackets table row 0 cell negative 1 end cell row cell negative 2 end cell cell negative 3 end cell end table close square brackets space space space rightwards double arrow space straight X equals 1 fourth open square brackets table row 0 cell negative 1 end cell row cell negative 2 end cell cell negative 3 end cell end table close square brackets
rightwards double arrow space space space straight X equals open square brackets table row 0 cell negative 1 fourth end cell row cell negative 1 half end cell cell negative 3 over 4 end cell end table close square brackets

Some More Questions From Matrices Chapter