Sponsor Area

Vector Algebra

Question
CBSEENMA12032941

Form the differential equation corresponding to y2 = m (a2 – x2) by eliminating m and a.

Solution

The given equation is straight y squared space equals space straight m left parenthesis straight a squared minus straight x squared right parenthesis                   ...(1)
Differentiating w.r.t.x, we get,
2 straight y dy over dx space equals space straight m left parenthesis 0 minus 2 space straight x right parenthesis
or    straight y dy over dx space equals space minus straight m space straight x                                                ...(2)
Again differentiating w.r.t.x,
               straight y fraction numerator straight d squared straight y over denominator dx squared end fraction plus dy over dx. dy over dx space equals space minus straight m
or             straight y space fraction numerator straight d squared straight y over denominator dx squared end fraction plus open parentheses dy over dx close parentheses squared space equals space minus open parentheses straight y fraction numerator begin display style dy over dx end style over denominator straight x end fraction close parentheses space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space space of space space left parenthesis 2 right parenthesis close square brackets
or               xy fraction numerator straight d squared straight y over denominator dx squared end fraction plus straight x open parentheses dy over dx close parentheses squared space equals space straight y dy over dx
Which is the required differential equation.

Some More Questions From Vector Algebra Chapter