Sponsor Area

Vector Algebra

Question
CBSEENMA12032932

Form the differential equation representing the family of curves y = a sin (x + b), where a and b are arbitrary constants.  

Solution
The given equation is
                        y = a sin (x + b)                          ...(1)
 Differentiating w.r.t.x, we get,
                         dy over dx space equals space straight a space cos left parenthesis straight x plus straight b right parenthesis
Again differentiating w.r.t.x, we get,
                            fraction numerator straight d squared straight y over denominator dx squared end fraction space equals negative asin left parenthesis straight x plus straight b right parenthesis
or               fraction numerator straight d squared straight y over denominator dx squared end fraction equals space minus straight y                                  open square brackets because space of space left parenthesis 1 right parenthesis close square brackets
or               fraction numerator straight d squared straight y over denominator dx squared end fraction plus straight y space equals space 0
 which is required differential equation.