-->

Inverse Trigonometric Functions

Question
CBSEENMA12032816

If tan–1.x + tan–1y + tan –1z = straight pi, prove that x + y + z = x y z.

Solution
∵ tan–1x + tan–1y + tan–1z = straight pi
therefore space space space space space tan to the power of negative 1 end exponent open square brackets fraction numerator straight x plus straight y plus straight z minus straight x space straight y space straight z over denominator 1 minus straight x space straight y space straight i space straight y space straight z space minus space straight z space straight x end fraction close square brackets equals straight pi space space space space space rightwards double arrow space space space fraction numerator straight x plus straight y plus straight z minus straight x space straight y space straight z over denominator 1 minus straight x space straight y minus space straight y space straight z minus straight z space straight x end fraction equals tan space straight pi
rightwards double arrow space space space fraction numerator straight x plus straight y plus straight z minus space straight x space straight y space straight z over denominator 1 minus straight x space straight y minus space straight y space straight z minus space straight z space straight x end fraction equals 0 space space space rightwards double arrow space space straight x plus straight y plus straight x minus straight x space straight y space straight z space equals 0 space space space rightwards double arrow space straight x plus straight y plus straight z equals space straight x space straight y space straight z

Some More Questions From Inverse Trigonometric Functions Chapter