-->

Inverse Trigonometric Functions

Question
CBSEENMA12032785

Write tan to the power of negative 1 end exponent open parentheses fraction numerator 1 over denominator square root of straight x squared minus 1 end root end fraction close parentheses comma space open vertical bar straight x close vertical bar space greater than space 1 in the simplest form.

Solution
Let space straight x equals tan to the power of negative 1 end exponent open parentheses fraction numerator 1 over denominator square root of straight x squared minus 1 end root end fraction close parentheses
Put space straight x space equals space sec space straight theta
therefore space straight z space equals space tan to the power of negative 1 end exponent equals open parentheses fraction numerator 1 over denominator square root of straight x squared minus 1 end root end fraction close parentheses equals tan to the power of negative 1 end exponent open parentheses fraction numerator 1 over denominator square root of sec squared space straight theta minus 1 end root end fraction close parentheses
space space space space space space equals space tan to the power of negative 1 end exponent open parentheses fraction numerator 1 over denominator tan space straight theta end fraction close parentheses equals tan to the power of negative 1 end exponent space left parenthesis cot space straight theta right parenthesis equals tan to the power of negative 1 end exponent open square brackets tan open parentheses straight x over 2 minus straight theta close parentheses close square brackets
space space space space space space equals space straight pi over 2 minus sec to the power of negative 1 end exponent straight x

Some More Questions From Inverse Trigonometric Functions Chapter