-->

Vector Algebra

Question
CBSEENMA12032779

Draw the rough sketch and find the area of the region:
{(x, y) : y2 ≤ 8 x, x2 + x2 ≤ 9} 

Solution

Given region is
{(x, y): y2 ≤ 8 x, x2 +y2 ≤ 9}
Consider the equations
y2 = 8 x    ...(1)
and x2 + y2 = 9    ...(2)
From (1) and (2). we get,
x2 + 8 x = 9 or x2 + 8 x-9 = 0⇒ (x + 9)(x - 1) = 0
⇒    x = - 9, 1
which gives the abscissa of the points of intersection P and Q.
Rejecting negative value of x, we get, x = 1
Required area = Area of shaded region
                       = 2 (area of region APOA)
                       = 2[area of region AMPA + area of region MOPM]
                       equals space 2 open square brackets integral subscript 0 superscript 1 2 square root of 2 square root of straight x dx plus integral subscript 1 superscript 3 square root of 9 minus straight x squared end root dx close square brackets
equals space 4 square root of 2 integral subscript 0 superscript 1 straight x to the power of 1 half end exponent dx plus 2 integral subscript 1 superscript 3 square root of left parenthesis 3 right parenthesis squared minus straight x squared end root space dx
space equals space 4 square root of 2 open square brackets fraction numerator straight x to the power of begin display style 3 over 2 end style end exponent over denominator begin display style 3 over 2 end style end fraction close square brackets subscript 0 superscript 1 plus 2 open square brackets fraction numerator straight x square root of left parenthesis 3 right parenthesis squared minus straight x squared end root over denominator 2 end fraction plus fraction numerator left parenthesis 3 right parenthesis squared over denominator 2 end fraction sin to the power of negative 1 end exponent open parentheses straight x over 3 close parentheses close square brackets subscript 1 superscript 3
equals space fraction numerator 8 square root of 2 over denominator 3 end fraction open square brackets straight x to the power of 3 over 2 end exponent close square brackets subscript 0 superscript 1 plus space open square brackets straight x square root of 9 minus straight x squared end root plus 9 space s i n to the power of negative 1 end exponent open parentheses straight x over 3 close parentheses close square brackets subscript 1 superscript 3
equals space fraction numerator 8 square root of 2 over denominator 3 end fraction left parenthesis 1 minus 0 right parenthesis plus open parentheses 3 square root of 9 minus 9 end root plus 9 space sin to the power of negative 1 end exponent 1 close parentheses minus open parentheses 1 square root of 9 minus 1 end root plus 9 space sin to the power of negative 1 end exponent 1 third close parentheses
equals space fraction numerator 8 square root of 2 over denominator 3 end fraction plus open parentheses 0 plus 9 cross times straight pi over 2 close parentheses minus open parentheses square root of 8 plus 9 space sin to the power of negative 1 end exponent 1 third close parentheses
equals space fraction numerator 8 square root of 2 over denominator 3 end fraction plus fraction numerator 9 straight pi over denominator 2 end fraction minus 2 square root of 2 minus 9 space sin to the power of negative 1 end exponent open parentheses 1 third close parentheses
equals space open square brackets fraction numerator 2 square root of 2 over denominator 3 end fraction plus fraction numerator 9 straight pi over denominator 2 end fraction minus 9 space sin to the power of negative 1 end exponent open parentheses 1 third close parentheses close square brackets space sq. space units.

Some More Questions From Vector Algebra Chapter