-->

Inverse Trigonometric Functions

Question
CBSEENMA12032778

Prove sin space left parenthesis 2 space sin to the power of negative 1 end exponent space straight x right parenthesis equals space 2 space straight x square root of 1 minus straight x squared end root

Solution
Put x = sin θ or θ = sin –1x'
therefore space space straight L. straight H. straight S. space space equals space sin left parenthesis 2 space sin to the power of negative 1 end exponent space straight x right parenthesis space equals space sin space left parenthesis 2 space straight theta right parenthesis
space space space space space space space space space space space space space space space space equals space 2 space sin space straight theta space cos space straight theta space equals space sin space straight theta space square root of 1 minus sin squared space straight theta end root equals 2 space straight x space square root of 1 minus straight x squared end root equals space straight R. straight H. straight S.

Some More Questions From Inverse Trigonometric Functions Chapter