-->

Vector Algebra

Question
CBSEENMA12032769

Find the area of the region
{(x, y): 0 ≤ y ≤ x2 + 1 , 0 ≤ y ≤ x + 1, 0 ≤ x ≤ 2}.

Solution

 The given region is
{( x, y): 0 ≤ y ≤ x2 + 1, 0 ≤ y ≤ x + 1, 0 ≤ x ≤ 2}
Thus region is the intersection of the following regions:
R1 = {(x, y) : 0 ≤ y ≤ x2 + 1}
R2 = { (x, y) : 0 ≤ y ≤ x + 1}
R3 = {(x, y) : 0 ≤ x ≤ 2}
The function with graph in the figure is
straight f left parenthesis straight x right parenthesis space equals space open curly brackets table attributes columnalign left end attributes row cell straight x squared plus 1 space space space space if space space space 0 space less or equal than space straight x space less or equal than space 1 end cell row cell straight x plus 1 space space space space space space if space space space 1 space less or equal than space straight x space less or equal than space 2 end cell end table close
Consider the equations
y = x2 + 1    ...(1)
and y = x + 1    ...(2)
Putting y = x + 1 in (1), we get
x + 1 = x2 + 1, or x = x2 ⇒ x2 - x = 0 ⇒ x(x - 1) = 0
∴ x = 0, 1
∴ from (2), y = 1, 2
∴ curve (1) and (2) intersect in the points P (0, 1) and Q (1, 2).
The region considered is bounded by
                              y = f(x),
                              y = 0
                              x = 0
              and          x = 2
therefore required area = integral subscript 0 superscript 2 straight f left parenthesis straight x right parenthesis space dx
                            equals space integral subscript 0 superscript 1 straight f left parenthesis straight x right parenthesis space dx plus integral subscript 1 superscript 2 straight f left parenthesis straight x right parenthesis space dx space equals space integral subscript 0 superscript 1 left parenthesis straight x squared plus 1 right parenthesis dx plus integral subscript 1 superscript 2 left parenthesis straight x plus 1 right parenthesis space dx
equals space open square brackets straight x cubed over 3 plus straight x close square brackets subscript 0 superscript 1 plus open square brackets straight x squared over 2 plus straight x close square brackets subscript 1 superscript 2
equals space open square brackets open parentheses 1 third plus 1 close parentheses minus left parenthesis 0 plus 0 right parenthesis close square brackets space plus space open square brackets left parenthesis 2 plus 2 right parenthesis space minus space open parentheses 1 half plus 1 close parentheses close square brackets
equals space 4 over 3 minus 0 plus 4 minus 3 over 2 equals space 16 over 3 minus 3 over 2 equals fraction numerator 32 minus 9 over denominator 6 end fraction equals 23 over 6 space sq. space units. space

Some More Questions From Vector Algebra Chapter