-->

Inverse Trigonometric Functions

Question
CBSEENMA12032750

Solve tan to the power of negative 1 end exponent 2 x plus tan to the power of negative 1 end exponent 3 x equals straight pi over 4.

Solution
tan to the power of negative 1 end exponent 2 x plus tan to the power of negative 1 end exponent 3 x equals straight pi over 4 space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space tan to the power of negative 1 end exponent open square brackets fraction numerator 2 x plus 3 x over denominator 1 minus 2 x.3 x end fraction close square brackets
rightwards double arrow space space space space fraction numerator 5 x over denominator 1 minus 6 x squared end fraction equals tan straight pi over 4 space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space fraction numerator 5 x over denominator 1 minus 6 x squared end fraction equals 1 space
rightwards double arrow space space space 5 x equals 1 minus 6 x squared space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space 6 x squared plus 5 x minus 1 equals 0 space
rightwards double arrow space space space left parenthesis 6 x minus 1 right parenthesis left parenthesis x plus 1 right parenthesis equals 0 space space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space space x equals 1 over 6. negative 1 space space space

Now x = – 1 does not satisfy the given equation as the L.H.S. of the equation becomes negative

therefore space space space straight x equals 1 over 6 is the only solution of the given equation.

Some More Questions From Inverse Trigonometric Functions Chapter