Sponsor Area

Vector Algebra

Question
CBSEENMA12032746

Using integration find the area of region bounded by the triangle whose vertices are (-1, 0), (1, 3) and (3, 2).

Solution

Let A(-1, 0), B(1, 3), C(3, 2) be the vertices of the given triangle. 
The equation of AB is
                   straight y minus 0 space equals fraction numerator 3 minus 0 over denominator 1 plus 1 end fraction left parenthesis straight x plus 1 right parenthesis
or                 straight y equals space 3 over 2 left parenthesis straight x plus 1 right parenthesis              ...(1)

The equation of BC is
                    straight y minus 3 space equals space fraction numerator 2 minus 3 over denominator 3 minus 1 end fraction left parenthesis straight x minus 1 right parenthesis
or                straight y minus 3 space equals negative 1 half left parenthesis straight x minus 1 right parenthesis space or space straight y minus 3 space equals space minus 1 half straight x plus 1 half
or                  straight y equals negative 1 half straight x plus 7 over 2                        ...(2)
The equation of CA is
                  straight y minus 2 space equals space fraction numerator 0 minus 2 over denominator negative 1 minus 3 end fraction left parenthesis straight x minus 3 right parenthesis space space or space space straight y space minus space 2 space equals space 1 half left parenthesis straight x minus 3 right parenthesis
or         straight y minus 2 space equals space 1 half straight x minus 3 over 2 space space space space or space space space space straight y space equals space 1 half straight x plus 1 half         ...(3)
From B, draw BM ⊥ x-axis and from C, draw CN ⊥ x-axis.
Required area = Area of ∆ABC
= Area of increment AMB + area of region BMNC - area of increment ANC
equals space integral subscript negative 1 end subscript superscript 1 3 over 2 left parenthesis straight x plus 1 right parenthesis space dx plus integral subscript 1 superscript 3 open parentheses negative 1 half straight x plus 7 over 2 close parentheses dx space minus space integral subscript negative 1 end subscript superscript 3 open parentheses 1 half straight x plus 1 half close parentheses dx
equals space 3 over 2 open square brackets straight x squared over 2 plus straight x close square brackets subscript negative 1 end subscript superscript 1 plus open square brackets negative straight x squared over 4 plus 7 over 2 straight x close square brackets subscript 1 superscript 3 space minus space open square brackets straight x squared over 4 plus straight x over 2 close square brackets subscript negative 1 end subscript superscript 3
equals space 3 over 2 open square brackets open parentheses 1 half plus 1 close parentheses minus open parentheses 1 half minus 1 close parentheses close square brackets plus open square brackets open parentheses negative 9 over 4 plus 21 over 2 close parentheses minus open parentheses negative 1 fourth plus 7 over 2 close parentheses close square brackets minus open square brackets open parentheses 9 over 4 plus 3 over 2 close parentheses minus open parentheses 1 fourth minus 1 half close parentheses close square brackets
equals space 3 over 2 open parentheses 3 over 2 plus 1 half close parentheses plus open parentheses 33 over 4 minus 13 over 4 close parentheses minus open parentheses 15 over 4 plus 1 fourth close parentheses
equals space 9 over 4 plus 3 over 4 plus 33 over 4 minus 13 over 4 minus 15 over 4 minus 1 fourth equals 16 over 4 space equals space 4 space sq. space units.

Some More Questions From Vector Algebra Chapter