-->

Vector Algebra

Question
CBSEENMA12032732

Using integration, find the area of the triangular region whose sides have the equations y = 2 x + 1, y = 3 x + 1 and x = 4.

Solution

The equations of the sides are
y = 2 x + 1    ...(1)
y = 3 x + 1    ...(2)
and x = 4.    ...(3)
Subtracting (1) from (2), we get,
                 0 space equals straight x space rightwards double arrow space space space straight x space equals space 0
Putting x = 0  in (1), we get y = 0+1 = 1
therefore   line (1) and (2) intersect in A(0, 1)
From (1) and (3), we get,
                    straight x space equals space 4 comma space space straight y space equals space 8 space plus space 1 space equals space 9
therefore space space line (1) and (3) intersect in B (4, 9)

From (2) and (3), we get,
x = 4, y = 12 + 1 = 13
∴  lines (2) and (3) intersect in C (4, 13)
∴ vertices of the triangle ABC are A(0, 1), B (4, 9), C (4, 13)
Required area = Area of ∆ ABC = Area of region AOMC - area of region AOMB
equals space integral subscript 0 superscript 4 left parenthesis 3 straight x plus 1 right parenthesis space dx space minus space integral subscript 0 superscript 4 left parenthesis 2 straight x plus 1 right parenthesis space dx space equals space open square brackets fraction numerator 3 straight x squared over denominator 2 end fraction plus straight x close square brackets subscript 0 superscript 4 space minus open square brackets fraction numerator 2 straight x squared over denominator 2 end fraction plus straight x close square brackets subscript 0 superscript 4
equals space open square brackets left parenthesis 24 plus 4 right parenthesis space minus space left parenthesis 0 plus 0 right parenthesis close square brackets space minus space open square brackets left parenthesis 16 plus 4 right parenthesis space minus space left parenthesis 0 plus 0 right parenthesis close square brackets
equals space 8 space sq. space units.

Some More Questions From Vector Algebra Chapter