-->

Inverse Trigonometric Functions

Question
CBSEENMA12032724

Prove that sin to the power of negative 1 end exponent x plus sin to the power of negative 1 end exponent x y equals sin to the power of negative 1 end exponent open square brackets x square root of 1 minus y squared end root plus square root of 1 minus x squared end root close square brackets

Solution

Put sin–1.x = θ, sin–1 y = ϕ
∴x = sin θ, y = sin ϕ
Now sin (θ + ϕ) = sin θ cos ϕ + cos θ sinϕ
therefore space space sin left parenthesis straight theta plus straight ϕ right parenthesis sinθ square root of 1 minus sin squared straight ϕ end root plus square root of 1 minus sin squared straight theta. sinϕ end root
rightwards double arrow space space space straight theta plus straight ϕ equals sin to the power of negative 1 end exponent open square brackets sinθ square root of 1 minus sin squared straight ϕ end root plus sinϕ square root of 1 minus sin squared straight theta end root close square brackets
rightwards double arrow space space space sin to the power of negative 1 end exponent straight x plus sin to the power of negative 1 end exponent straight y equals sin to the power of negative 1 end exponent open square brackets straight x square root of 1 minus straight y squared end root plus straight y square root of 1 minus straight x squared end root close square brackets

Some More Questions From Inverse Trigonometric Functions Chapter