-->

Inverse Trigonometric Functions

Question
CBSEENMA12032722

Prove that cos e c to the power of negative 1 end exponent x plus s e c to the power of negative 1 end exponent x equals straight pi over 2 comma space open vertical bar x close vertical bar greater or equal than 1

Solution

 Let space cosec to the power of negative 1 end exponent straight x equals straight theta space space space space space space space space space space space space space space rightwards double arrow space space straight x equals sec open parentheses straight pi over 2 minus straight theta close parentheses
rightwards double arrow space space space sec to the power of negative 1 end exponent straight x equals straight pi over 2 minus straight theta space space space space space space space space rightwards double arrow space sec to the power of negative 1 end exponent straight x equals straight pi over 2 minus cosec to the power of negative 1 end exponent straight x
rightwards double arrow space space space sec to the power of negative 1 end exponent straight x plus cosec to the power of negative 1 end exponent straight x equals straight pi over 2

Some More Questions From Inverse Trigonometric Functions Chapter