-->

Inverse Trigonometric Functions

Question
CBSEENMA12032720

Prove that sin to the power of negative 1 end exponent space straight x plus space cos to the power of negative 1 end exponent space straight x equals straight pi over 2

Solution
Let sin–1x =θ
therefore space space space space space straight x space equals space sinθ space space space space space space space space space space space space space space space rightwards double arrow space straight x equals cos open parentheses straight pi over 2 minus straight theta close parentheses
rightwards double arrow space space space cos to the power of negative 1 space end exponent straight x equals straight pi over 2 minus straight theta space space space space space space space rightwards double arrow space cos to the power of negative 1 end exponent straight x equals straight pi over 2 minus sin to the power of negative 1 end exponent straight x
rightwards double arrow space space cos to the power of negative 1 end exponent space straight x plus sin to the power of negative 1 end exponent space straight x space equals space straight pi over 2

Some More Questions From Inverse Trigonometric Functions Chapter