-->

Vector Algebra

Question
CBSEENMA12032718

Find the area of the region included between the parabola straight y space equals 3 over 4 straight x squared space and space the space line space 3 straight x space minus space 2 straight y space plus space 12 space equals space 0

Solution
The equations of the given curves are
                 straight y equals space 3 over 4 straight x squared                          ...(1)
  and        3 straight x minus 2 straight y plus 12 space equals space 0             ...(2)
From (2), 2 straight y space equals space 3 straight x plus 12
therefore space space space straight y space equals space fraction numerator 3 straight x plus 12 over denominator 2 end fraction
Putting this value of y in (1), we get,
                                  fraction numerator 3 straight x plus 12 over denominator 2 end fraction space equals 3 over 4 straight x squared
therefore space space 6 straight x space plus 24 space equals space 3 straight x squared space space space space space rightwards double arrow space space straight x squared minus 2 straight x minus 8 space equals space 0 space space space space rightwards double arrow space space space space left parenthesis straight x plus 2 right parenthesis thin space left parenthesis straight x minus 4 right parenthesis space equals space 0
rightwards double arrow space space space space straight x space equals space minus 2.4
therefore space space space space straight y space equals space 3 comma space 12
therefore curves (1) and (2) intersect in points A (4, 12) and B(-2, 3).
From A. draw AM ⊥ x -axis and from B, draw BN ⊥ x-axis.
Required area = area of trapezium BNMA - (area BNO + area OMA)
equals space 1 half left parenthesis 3 plus 12 right parenthesis space cross times 6 space minus space integral subscript negative 2 end subscript superscript 4 3 over 4 straight x squared dx                          open square brackets because space of space left parenthesis 1 right parenthesis close square brackets
equals space 45 space minus space 3 over 4 integral subscript negative 2 end subscript superscript 4 straight x squared dx space equals space 45 minus 3 over 4 open square brackets straight x cubed over 3 close square brackets subscript negative 2 end subscript superscript 4
equals space 45 minus 1 fourth open square brackets straight x cubed close square brackets subscript negative 2 end subscript superscript 4 space equals space 45 minus 1 fourth left square bracket 64 plus 8 right square bracket space equals space 27 space sq. space units. space

Some More Questions From Vector Algebra Chapter