-->

Vector Algebra

Question
CBSEENMA12032684

Find the area of the region bounded by the curve y= x and the lines x = 1, x = 4 and the x-axis in the first quadrant.

Solution

The equation of curve is y2 = x
Required area = integral subscript 1 superscript 4 space straight y space dx space equals space integral subscript 1 superscript 4 square root of straight x space end root dx space equals integral subscript 1 superscript 4 straight x to the power of 1 half end exponent dx
                        equals space open square brackets fraction numerator straight x to the power of begin display style 3 over 2 end style end exponent over denominator begin display style 3 over 2 end style end fraction close square brackets subscript 1 superscript 4 space equals 2 over 3 open square brackets straight x to the power of 3 over 2 end exponent close square brackets subscript 1 superscript 4 space equals space 2 over 3 open square brackets open parentheses 4 close parentheses to the power of 3 over 2 end exponent minus 1 close square brackets
equals space 2 over 3 left parenthesis 8 minus 1 right parenthesis space equals space 2 over 3 cross times 7 space equals space 14 over 3 sq. space units.


 

Some More Questions From Vector Algebra Chapter