-->

Inverse Trigonometric Functions

Question
CBSEENMA12032680

Prove the following :

3 space cos to the power of negative 1 end exponent straight x equals cos to the power of negative 1 end exponent thin space left parenthesis 4 straight x cubed minus 3 straight x right parenthesis comma space straight x element of open square brackets 1 half comma space 1 close square brackets

Solution

Put x = sin θ
∴L.H.S. = 3 sin –1x = 3 sin–1(sin θ) = 3 θ
R.H.S. = sin–1(3 x – 4 x3)
= sin–1(3 sin θ – 4 sin3  θ)
= sin–1(sin 3 θ) = 3 θ
∴L.H.S. = R.H.S.

Some More Questions From Inverse Trigonometric Functions Chapter