-->

Inverse Trigonometric Functions

Question
CBSEENMA12032662

Show that cos (sin–1.x) = sin (cos–1x) = square root of 1 minus straight x squared end root space for space open vertical bar straight x close vertical bar space space less or equal than space 1

Solution

Let sin-1 x=Let space space space sin to the power of negative 1 end exponent space straight x space equals space straight theta
therefore space space space space straight x element of space left square bracket negative 1 comma space 1 right square bracket space and space straight theta element of open square brackets negative straight pi over 2 comma space straight pi over 2 close square brackets
therefore space space space straight x equals sin space straight theta space and space straight theta element of space open square brackets negative straight pi over 2 comma space straight pi over 2 close square brackets
therefore space space space cos space straight theta space is space plus space ve
Now space cos space straight theta space equals space square root of 1 minus sin squared space straight theta end root equals square root of 1 minus straight x squared end root
[ + ve sign taken before square root]
therefore space space space cos space left parenthesis sin to the power of negative 1 end exponent straight x right parenthesis equals square root of 1 minus straight x squared end root

Again, let cos –1x = ϕwhere x ∈ [– 1, 1 ] and ϕ ∈ [0,π]
∴ x = cos ϕ where ϕ ∈ [0, π]
∴sin ϕ is + ve

sin space straight ϕ space equals space square root of 1 minus cos squared space straight ϕ end root space equals square root of 1 minus straight x squared end root
therefore space space space space sin space left parenthesis cos to the power of negative 1 end exponent straight x right parenthesis equals square root of 1 minus straight x squared end root
(+ ve sign taken before under root)

Some More Questions From Inverse Trigonometric Functions Chapter