-->

Inverse Trigonometric Functions

Question
CBSEENMA12032640

Find the principal values of the following

cos to the power of negative 1 end exponent open parentheses negative 1 half close parentheses

Solution
Let equals cos to the power of negative 1 end exponent open parentheses negative 1 half close parentheses equals space straight y space where space 0 space less or equal than space straight y space less or equal than space straight pi
therefore space space space space cos space straight y space equals space minus 1 half space space where space 0 space less or equal than space straight y space less or equal than space straight pi
rightwards double arrow space space space space space straight y equals fraction numerator 2 straight pi over denominator 3 end fraction space space space space space space space space space space space space space space space space space space open square brackets because space space space cos fraction numerator 2 straight pi over denominator 3 end fraction equals cos space open parentheses straight pi minus straight pi over 3 close parentheses equals negative cos straight pi over 3 equals negative 1 half close square brackets
therefore     required principal value = fraction numerator 2 straight pi over denominator 3 end fraction

Some More Questions From Inverse Trigonometric Functions Chapter