-->

Integrals

Question
CBSEENMA12032596

Show that:
integral subscript negative 1 end subscript superscript 2 open vertical bar straight x cubed minus straight x close vertical bar space dx.


Solution

We have
1 less or equal than straight x less or equal than 0 space space rightwards double arrow space straight x cubed minus straight x space equals space straight x left parenthesis straight x squared minus 1 right parenthesis space greater or equal than 0 space space rightwards double arrow space space open vertical bar straight x cubed minus straight x close vertical bar space equals space straight x cubed minus straight x
0 less or equal than straight x less or equal than 1 space space space rightwards double arrow space space straight x cubed minus straight x space equals space straight x left parenthesis straight x squared minus 1 right parenthesis less or equal than 0 space space rightwards double arrow space space open vertical bar straight x cubed minus straight x close vertical bar space equals space minus left parenthesis straight x cubed minus straight x right parenthesis
1 less or equal than straight x less or equal than 2 space space space rightwards double arrow space straight x cubed minus straight x space equals space straight x left parenthesis straight x squared minus 1 right parenthesis space greater or equal than space 0 space rightwards double arrow space space open vertical bar straight x cubed minus straight x close vertical bar space equals space straight x cubed minus straight x
Let  straight I space equals space integral subscript negative 1 end subscript superscript 2 open vertical bar straight x cubed minus straight x close vertical bar space dx space equals space integral subscript negative 1 end subscript superscript 0 open vertical bar straight x cubed minus straight x close vertical bar space dx space space plus integral subscript 0 superscript 1 open vertical bar straight x cubed minus straight x close vertical bar space dx plus integral subscript 1 superscript 2 open vertical bar straight x cubed minus straight x close vertical bar space dx
           equals space integral subscript negative 1 end subscript superscript 0 left parenthesis straight x cubed minus straight x right parenthesis dx space minus space integral subscript 0 superscript 1 left parenthesis straight x cubed minus straight x right parenthesis space dx space plus space integral subscript 1 superscript 2 left parenthesis straight x cubed minus straight x right parenthesis space dx
            equals space open square brackets straight x to the power of 4 over 4 minus straight x squared over 2 close square brackets subscript negative 1 end subscript superscript 0 space minus open square brackets straight x to the power of 4 over 4 minus straight x squared over 2 close square brackets subscript 0 superscript 1 plus open square brackets straight x to the power of 4 over 4 minus straight x squared over 2 close square brackets subscript 1 superscript 2
equals space open square brackets left parenthesis 0 minus 0 right parenthesis minus open parentheses 1 fourth minus 1 half close parentheses close square brackets space minus open square brackets open parentheses 1 fourth minus 1 half close parentheses minus left parenthesis 0 minus 0 right parenthesis close square brackets space plus space open square brackets left parenthesis 4 minus 2 right parenthesis minus open parentheses 1 fourth minus 1 half close parentheses close square brackets
equals space minus open parentheses 1 fourth minus 1 half close parentheses minus open parentheses 1 fourth minus 1 half close parentheses plus 2 minus open parentheses 1 fourth minus 1 half close parentheses space equals space minus 3 open parentheses 1 fourth minus 1 half close parentheses plus 2
equals negative 3 open parentheses fraction numerator 1 minus 2 over denominator 4 end fraction close parentheses plus 2 space equals space minus 3 open parentheses negative 1 fourth close parentheses space plus 2 space equals space 3 over 4 plus 2 space equals space fraction numerator 3 plus 8 over denominator 4 end fraction space equals space 11 over 4

Some More Questions From Integrals Chapter