-->

Integrals

Question
CBSEENMA12032391

Evaluate integral subscript 0 superscript 1 space straight x space straight e to the power of straight x squared space dx

Solution

Let I = integral subscript 0 superscript 1 space straight x space straight e to the power of straight x squared end exponent space dx
Let straight I subscript 1 space equals space integral space straight x space straight e to the power of straight x squared end exponent space dx
Put straight x squared space equals space straight y comma space space    therefore space space space 2 space straight x space dx space equals space dy        rightwards double arrow   straight x space dx space equals space 1 half dx
therefore            straight I subscript 1 space equals space 1 half integral straight e to the power of straight y dy space equals space 1 half straight e to the power of straight y space equals space 1 half straight e to the power of straight x squared end exponent space equals space straight F left parenthesis straight x right parenthesis comma space say
therefore by second fundamental theorem,
                       I = F(1) - F(0) = 1 half straight e to the power of 1 minus 1 half straight e to the power of 0 space equals space 1 half straight e minus 1 half space equals space 1 half left parenthesis straight e minus 1 right parenthesis

Some More Questions From Integrals Chapter